## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

## B.Sc. DEGREE EXAMINATION - COMPUTER SCIENCE <br> FOURTH SEMESTER - APRIL 2023

UMT 4406 - MATHEMATICS FOR COMPUTER SCIENCE

Date: 04-05-2023
Time: 09:00 AM - 12:00 NOON

## SECTION A - K1 (CO1)

## Answer ALL the Questions

1. Answer the following
a) Give the order of the matrix $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & -4 & 0\end{array}\right)$.
b) When does a function $f$ said to be continuous at a point $x_{0}$ ?
c) Define solenoidal vector.
d) What is an ordinary differential equation?
e) Write short notes on complete integral.
2. Fill in the blanks
a) Every square matrix satisfies its own
b) The value of $\int x^{3} d x$ is
c) If $F$ is conservative, then $\qquad$ .
d) Second order linear ODE with variable coefficients is also known as
e) The order of the PDE $\frac{\partial^{2} y}{\partial x^{2}}-3 \frac{\partial y}{\partial x}-10 y=x^{2}$ is $\qquad$ .

## SECTION A - K2 (CO1)

## Answer ALL the Questions

( $10 \times 1=10$ )
3. Choose the correct option
a) A square matrix $A=\left(a_{i j}\right)$ is said to be a symmetric matrix if
(i) $a_{i j}=a_{i i}$
(ii) $a_{i j}=a_{j j}$
(iii) $a_{i j}=a_{j i}$
(iv) $a_{j j}=a_{i i}$
b) If $y=\sin 2 x$, then $\frac{d y}{d x}$ is
(i) $-2 \sin 2 x$
(ii) $2 \sin 2 x$
(iii) $-2 \cos 2 x$
(iv) $2 \cos 2 x$
c) In the direction of the vector $2 \vec{\imath}+2 \vec{\jmath}-\vec{k}$, the directional derivative of $\Phi=x+x y^{2}+y z^{3}$ at $(0,1,1)$ is
(i) 2
(ii) 3
(iii) 5
(iv) 1
d) The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$ is
(i) 1
(ii) 2
(iii) 3
(iv) 4
e) The solution of $z=p x+q y+p q$ is
(i) $z=p+q+p q$
(ii) $z=a x+b y+p b$
(iii) $z=p a+q b+a b$
(iv) $z=c x+d y+c d$
4. Say True or False
a) A unit matrix is a diagonal matrix.
b) One of the applications of integration is finding area.
c) If $F$ is a vector field, then $\nabla \cdot F$ is a vector field.
d) The complementary function and general solution are different for $\left(D^{2}-2 m D+m^{2}\right) y=0$.
e) In the equation $z=x^{2}+y^{2}, z$ is a dependent variable.

## SECTION B - K3 (CO2)

|  | Answer any TWO of the following $(2 \times 10=$ <br> 20) |
| :---: | :---: |
| 5. | Determine $\int_{0}^{5} \int_{0}^{1}(x+y) d x d y$ and $\int_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}\right) d x d y$. |
| 6. | Verify Stroke's theorem for $A=(2 x-y) \vec{\imath}-y z^{2} \vec{\jmath}-y^{2} z \vec{k}$ taken over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and the boundary curve $C$, is the $x^{2}+y^{2}=1, z=0$. |
| 7. | Find the solution of the equation $\left(D^{2}+4 D+5\right) y=e^{x}+x^{3}$. |
| 8. | Solve the equation $p q+p+q=0$. |
|  | SECTION C - K4 (CO3) |
|  | Answer any TWO of the following $(2 \times 10=$ <br> 20) |
| 9. | Find the eigen vectors of the matrix $A=\left(\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & 1\end{array}\right)$. |
| 10. | Using Bernoulli's formula determine $\int x^{4} \sin x d x$. |
| 11. | Determine the solution of the equation $3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x$. |
| 12. | Solve the following partial differential equations <br> a) $p=y^{2} q^{2}$ <br> b) $p\left(1+q^{2}\right)=q(z-1)$. |

## SECTION D - K5 (CO4)

Answer any ONE of the following
$(1 \times 20=20)$
13.
a) Determine the characteristic equation of the matrix $A=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$. Hence find its inverse.
b) Find the maxima and minima of the function $y=x^{3}-18 x^{2}+96 x+4$.
14. Verify divergence theorem for $F=\left(x^{3}-y z\right) \vec{\imath}-2 x^{2} \vec{\jmath}+2 \vec{k}$ taken over the cube bounded by $x=0, x=a, y=0, y=a, z=0$ and $z=a$.

SECTION E - K6 (CO5)

|  | Answer any ONE of the following <br> 20) | $\mathbf{1}$ x 20 $=$ <br> 15. Diagonalize the matrix $A=\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right)$   |  |  |
| :--- | :--- | :--- | :--- | :--- |

16. a) Construct a Cauchy-Euler equation given $(5+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=6 x$ and hence solve.
b) Find the general solution of $x^{2} p+y^{2} q=(x+y) z$.
