LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034					
B.Sc. DEGREE EXAMINATION – COMPUTER SCIENCE					
FOURTH SEMESTER – APRIL 2023			2023		
UMT 4406 – MATHEMATICS FOR COMPUTER SCIENCE					
UMI 4406 - MATHEMATICS FOR COMPUTER SCIENCE					
Л	ate: 04-05-2023 Dept.	No	Max. : 100 Marks		
	ime: 09:00 AM - 12:00 NOON	NO.	Max. 100 Marks		
	SECTION A - K1 (CO1)				
	Answer ALL the Questions		(10 x 1 = 10)		
1.	Answer the following	2 0			
a)	Give the order of the matrix $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 2 & 0 \\ -4 & 0 \end{pmatrix}$.			
b)	When does a function f said to be continuous at a point x_0 ?				
c)	Define solenoidal vector.				
d)	What is an ordinary differential equat				
e)	Write short notes on complete integra	l.			
2.	Fill in the blanks				
a)	Every square matrix satisfies its own $T_{1} = \int \int dx dx$	·			
b)	The value of $\int x^3 dx$ is	·			
c) d)	If F is conservative, thenSecond order linear ODE with variable	 la acofficiente is also know	n ag		
u) e)	Second order inical ODE with variable		ii as		
	The order of the PDE $\frac{\partial^2 y}{\partial x^2} - 3\frac{\partial y}{\partial x} - 10y = x^2$ is				
	SECTION A - K2 (CO1)				
3.	Answer ALL the Questions Choose the correct option		(10 x 1 = 10)		
a)	A square matrix $A = (a_{ij})$ is said to b	ne a symmetric matrix if			
	(i) $a_{ij} = a_{ii}$ (ii) $a_{ij} = a_{jj}$		(iv) $a_{ii} = a_{ii}$		
b)	If $y = \sin 2x$, then $\frac{dy}{dx}$ is				
	ux .				
	(i) $-2\sin 2x$ (ii) $2\sin 2x$	(iii) $-2\cos 2x$			
c)	In the direction of the vector $2\vec{i} + 2\vec{j}$	$-\dot{k}$, the directional derivation	ive of $\Phi = x + xy^2 + yz^3$ at (0,1,1)		
	is (D. 2)				
4)	(i) 2 (ii) 3	$\frac{(iii) 5}{d^2 y dy}$	(iv) 1		
d)	The degree of the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ is				
	(i) 1 (ii) 2	(iii) 3	(iv) 4		
e)	The solution of $z = px + qy + pq$ is				
	(i) $z = p + q + pq$	(ii) $z = ax + by + pb$			
	(iii) $z = pa + qb + ab$	(iv) z = cx + dy + cd			
4.	Say True or False				
a)	A unit matrix is a diagonal matrix.				
b)	One of the applications of integration is finding area.				
c)	If <i>F</i> is a vector field, then $\nabla \cdot F$ is a vector field.				

d)	The complementary function and general solution are different for $(D^2 - 2mD + m^2)y = 0$.			
e) In the equation $z = x^2 + y^2$, z is a dependent variable.				
SECTION B - K3 (CO2)				
	Answer any TWO of the following $(2 \times 10 =$			
	20)			
5.	Determine $\int_0^5 \int_0^1 (x+y) dx dy$ and $\int_0^a \int_0^b (x^2+y^2) dx dy$.			
6.	Verify Stroke's theorem for $A = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ taken over the upper half surface of the			
	sphere $x^2 + y^2 + z^2 = 1$ and the boundary curve <i>C</i> , is the $x^2 + y^2 = 1$, $z = 0$.			
7.				
8.				
SECTION C – K4 (CO3)				
	Answer any TWO of the following $(2 \times 10 =$			
	20)			
9.	Find the eigen vectors of the matrix $A = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix}$.			
10.	Using Bernoulli's formula determine $\int x^4 \sin x dx$.			
11.	• Determine the solution of the equation $3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$.			
12.	Solve the following partial differential equations			
	a) $p = y^2 q^2$			
	b) $p(1+q^2) = q(z-1)$.			
SECTION D – K5 (CO4)				
	Answer any ONE of the following(1 x 20 = 20)			
13.	a) Determine the characteristic equation of the matrix $A = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$. Hence find its inverse.			
1.4	b) Find the maxima and minima of the function $y = x^3 - 18x^2 + 96x + 4$.			
14.				
x = 0, x = a, y = 0, y = a, z = 0 and z = a.				
	SECTION E - K6 (CO5)			
	Answer any ONE of the following $(1 \times 20 =$			
15.				
13.	Diagonalize the matrix $A = \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$.			
16.	a) Construct a Cauchy-Euler equation given $(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 6x$ and hence			
	solve.			
	b) Find the general solution of $x^2p + y^2q = (x + y)z$. (12+8)			
&&&&&&&&				